Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác (có lời giải chi tiết)

Cập nhật lúc: 15:11 09-08-2017 Mục tin: LỚP 11


Tìm giá trị lớn nhất và nhỏ nhất của hàm số lượng giác là một bài toán thường gặp. Học sinh thường nghĩ bài toán này khó và phải vận dụng nhiều bất đẳng thức. Tuy nhiên với tính chất cơ bản của các hàm số lượng giác thì bài toán tìm giá trị lớn nhất và nhỏ nhất của các hàm số lượng giác trở nên đơn giản hơn.

TÌM GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ LƯỢNG GIÁC

Phương pháp: Cho hàm số \(f(x)\) xác định trên tập \(D\).

$$\eqalign{
& \bullet \,M = \mathop {max}\limits_D f\left( x \right) \Leftrightarrow \left\{ \matrix{
f\left( x \right) \le M\,\,\forall x \in D \hfill \cr
\exists {x_0} \in D:\,\,f\left( x \right) = M \hfill \cr} \right. \cr
& \bullet \,m = \mathop {\min }\limits_D f\left( x \right) \Leftrightarrow \left\{ \matrix{
f\left( x \right) \ge m\,\,\forall x \in D \hfill \cr
\exists {x_0} \in D:\,f\left( {{x_0}} \right) = m \hfill \cr} \right. \cr} $$

Lưu ý: 

$$\eqalign{
& \bullet \, - 1 \le \sin \,x \le 1;\,\, - 1 \le \cos \,x \le 1 \cr
& \bullet \,\,0 \le {\sin ^2}x \le 1;\,\,0 \le {\cos ^2}x \le 1 \cr
& \bullet \,\,0 \le \sqrt {\sin \,x} \le 1;\,\,0 \le \sqrt {\cos \,x} \le 1 \cr} $$

 

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT Quốc Gia 2021