PHƯƠNG PHÁP GIẢI HỆ PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN DẠNG I

Cập nhật lúc: 10:07 04-07-2018 Mục tin: LỚP 11


Phương pháp, các ví dụ có trình bày lời giải chi tiết và bài tập áp dụng hệ phương trình lượng giác cơ bản dạng 1.

PHƯƠNG PHÁP GIẢI HỆ PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN DẠNG I

PHƯƠNG PHÁP CHUNG

Với các hệ phương trình

\(\begin{array}{l}\left\{ \begin{array}{l}\sin x \pm \sin y = m\\x \pm y = \alpha \end{array} \right.\\\left\{ \begin{array}{l}\cos x \pm \cos y = m\\x \pm y = \alpha \end{array} \right.\\\left\{ \begin{array}{l}\tan x \pm \tan y = m\\x \pm y = \alpha \end{array} \right.\\\left\{ \begin{array}{l}\cot x \pm \cot y = m\\x \pm y = \alpha \end{array} \right.\end{array}\)

Ta chuyển tổng \(f\left( x \right) \pm f\left( y \right) = m\) thành tích bằng một trong các công thức

\(\begin{array}{l}\sin x + \sin y = 2\sin \frac{{x + y}}{2}\cos \frac{{x - y}}{2}\\\sin x - \sin y = 2\cos \frac{{x + y}}{2}\sin \frac{{x - y}}{2}\\\cos x + \cos y = 2\cos \frac{{x + y}}{2}\cos \frac{{x - y}}{2}\\\cos x - \cos y =  - 2\sin \frac{{x + y}}{2}\sin \frac{{x - y}}{2}\\\tan x \pm \tan y = \frac{{\sin \left( {x \pm y} \right)}}{{\cos x\cos y}}\end{array}\)

Chú ý: Phương pháp chung là nếu biết tổng \(x + y\) thì tìm hiệu \(x - y\) thay ngược lại, bằng các công thức biến đổi, tức là:

- Ta đi biến đổi phương trình \(f\left( x \right) \pm f\left( y \right) = m \Leftrightarrow {g_1}\left( {x + y} \right).{g_2}\left( {x - y} \right) = {m_1}\,\,\,\left( * \right)\)

- Từ đó thay phương trình \(x \pm y = \alpha \) vào (*) để tìm biểu thức còn lại.

Ví dụ 1: Cho hệ phương trình: \(\left\{ \begin{array}{l}\cos x + \cos y = m\,\,\,\left( 1 \right)\\x - y = \frac{{2\pi }}{3}\end{array} \right.\)

a) Giải hệ phương trình với \(m =  - \frac{1}{2}\)

b) Tìm m để hệ có nghiệm.

Giải:

Biến đổi (1) về dạng:

\(\begin{array}{l}\,\,\,\,2\cos \frac{{x + y}}{2}\cos \frac{{x - y}}{2} = m\\ \Leftrightarrow 2\cos \frac{{x + y}}{2}\cos \frac{\pi }{3} = m\\ \Leftrightarrow \cos \frac{{x + y}}{2} = m\,\,\,\,\left( 3 \right)\end{array}\)

a) Với \(m =  - \frac{1}{2}\), ta được: \(\left( 3 \right) \Leftrightarrow \cos \frac{{x + y}}{2} =  - \frac{1}{2} \Leftrightarrow \frac{{x + y}}{2} =  \pm \frac{{2\pi }}{3} + 2k\pi  \Leftrightarrow x + y =  \pm \frac{{4\pi }}{3} + 4k\pi \)

Do đó hệ phương trình tương đương với

\(\left[ \begin{array}{l}\left\{ \begin{array}{l}x + y = \frac{{4\pi }}{3} + 4k\pi \\x - y = \frac{{2\pi }}{3}\end{array} \right.\\\left\{ \begin{array}{l}x + y =  - \frac{{4\pi }}{3} + 4k\pi \\x - y = \frac{{2\pi }}{3}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = \pi  + 2k\pi \\y = \frac{\pi }{3} + 2k\pi \end{array} \right.\\\left\{ \begin{array}{l}x =  - \frac{\pi }{3} + 2k\pi \\y =  - \pi  + 2k\pi \end{array} \right.\end{array} \right.\,\,\,\left( {k \in Z} \right)\)

b) Hệ có nghiệm \( \Leftrightarrow \left( 3 \right)\) có nghiệm \( \Leftrightarrow \left| m \right| \le 1\).

Ví dụ 2: Giải hệ phương trình \(\left\{ \begin{array}{l}\sin x + \cos y = \frac{{\sqrt 2 }}{2}\,\,\,\,\left( 1 \right)\\x - y =  - \frac{\pi }{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Giải

Biến đổi (1) về dạng

\(\begin{array}{l}\,\,\,\,\,\,\,\sin x + \sin \left( {\frac{\pi }{2} - x} \right) = \frac{{\sqrt 2 }}{2}\\ \Leftrightarrow 2\sin \left( {\frac{{x - y}}{2} + \frac{\pi }{4}} \right).\cos \left( {\frac{{x + y}}{2} - \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\\ \Leftrightarrow \sin \frac{\pi }{8}.\cos \left( {\frac{{x + y}}{2} - \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\,\,\,\,\left( 3 \right)\end{array}\)

Ta có

\(\begin{array}{l}\frac{{\sqrt 2 }}{2} = \cos \frac{\pi }{4} = 1 - 2{\sin ^2}\frac{\pi }{8} \Leftrightarrow \sin \frac{\pi }{8} = \frac{{\sqrt {2 - \sqrt 2 } }}{2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2{\cos ^2}\frac{\pi }{8} - 1 \Leftrightarrow \cos \frac{\pi }{8} = \frac{{\sqrt {2 + \sqrt 2 } }}{2}\end{array}\)

Khi đó:

\(\begin{array}{l}\left( 3 \right) \Leftrightarrow \cos \left( {\frac{{x + y}}{2} - \frac{\pi }{4}} \right) = \frac{1}{{\sqrt 2 \sqrt {2 - \sqrt 2 } }} = \frac{{\sqrt {2 + \sqrt 2 } }}{2} = \cos \frac{\pi }{8}\\ \Leftrightarrow \frac{{x + y}}{2} - \frac{\pi }{4} =  \pm \frac{\pi }{8} + 2k\pi \\ \Leftrightarrow \left[ \begin{array}{l}x + y = \frac{{3\pi }}{4} + 4k\pi \\x + y = \frac{\pi }{4} + 4k\pi \end{array} \right.\end{array}\)

Do đó hệ phương trình tương đương với

\(\left[ \begin{array}{l}\left\{ \begin{array}{l}x + y = \frac{{3\pi }}{4} + 4k\pi \\x - y =  - \frac{\pi }{4}\end{array} \right.\\\left\{ \begin{array}{l}x + y = \frac{\pi }{4} + 4k\pi \\x - y =  - \frac{\pi }{4}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = \frac{\pi }{4} + 2k\pi \\y = \frac{\pi }{2} + 2k\pi \end{array} \right.\\\left\{ \begin{array}{l}x = 2k\pi \\y = \frac{\pi }{4} + 2k\pi \end{array} \right.\end{array} \right.\,\,\,\left( {k \in Z} \right)\)

Ví dụ 3: Cho hệ phương trình \(\left\{ \begin{array}{l}\tan x - \tan y = m\,\,\,\,\,\left( 1 \right)\\x + y = \frac{{3\pi }}{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

a) Giải hệ phương trình với \(m = 2\)

b) Tìm m để hệ có nghiệm.

Giải

Điều kiện: \(\left\{ \begin{array}{l}\cos x \ne 0\\\cos y \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{2} + k\pi \\y \ne \frac{\pi }{2} + l\pi \end{array} \right.\,\,\,\left( {k;l \in Z} \right)\)

Biến đổi (1) về dạng

\(\begin{array}{l}\frac{{\sin \left( {x - y} \right)}}{{\cos x\cos y}} = m \Leftrightarrow \sin \left( {x - y} \right) = \frac{m}{2}\left[ {\cos \left( {x + y} \right) + \cos \left( {x - y} \right)} \right]\\ \Leftrightarrow 2\sin \left( {x - y} \right) - m\cos \left( {x - y} \right) = \frac{{ - m\sqrt 2 }}{2}\,\,\,\left( 3 \right)\end{array}\)

a) Với \(m = 2\) ta được:

\(\begin{array}{l}\left( 3 \right) \Leftrightarrow \sin \left( {x - y} \right) - \cos \left( {x - y} \right) = \frac{{ - \sqrt 2 }}{2}\\ \Leftrightarrow \sqrt 2 \sin \left( {x - y - \frac{\pi }{4}} \right) =  - \frac{{\sqrt 2 }}{2}\\ \Leftrightarrow \sin \left( {x - y - \frac{\pi }{4}} \right) =  - \frac{1}{2}\\ \Leftrightarrow \left[ \begin{array}{l}x - y - \frac{\pi }{4} =  - \frac{\pi }{6} + 2k\pi \\x - y - \frac{\pi }{4} = \frac{{7\pi }}{6} + 2k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x - y = \frac{\pi }{{12}} + 2k\pi \\x - y = \frac{{17\pi }}{{12}} + k2\pi \end{array} \right.\end{array}\)

Do đó hệ phương trình tương đương với

  \(\left[ \begin{array}{l}\left\{ \begin{array}{l}x - y = \frac{\pi }{{12}} + 2k\pi \\x + y = \frac{{3\pi }}{4}\end{array} \right.\\\left\{ \begin{array}{l}x - y = \frac{{17\pi }}{{12}} + 2k\pi \\x + y = \frac{{3\pi }}{4}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = \frac{{5\pi }}{{12}} + k\pi \\y = \frac{\pi }{3} - k\pi \end{array} \right.\\\left\{ \begin{array}{l}x = \frac{{13\pi }}{{12}} + k\pi \\y =  - \frac{\pi }{3} - k\pi \end{array} \right.\end{array} \right.\,\,\,\left( {k \in Z} \right)\)

b) Hệ có nghiệm khi (3) có nghiệm \( \Leftrightarrow {a^2} + {b^2} \ge {c^2} \Leftrightarrow 4 + {m^2} \ge \frac{{{m^2}}}{2}\)

\( \Leftrightarrow 8 + {m^2} \ge 0\) luôn đúng

Vậy hệ có nghiệm với mọi m.

Ví dụ 4: Cho hệ phương trình \(\left\{ \begin{array}{l}x + y = \frac{\pi }{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\2{\sin ^2}x + 2{\cos ^2}y = 2m + 1\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

a) Giải hệ với \(m = 0\)

b) Tìm m hệ có nghiệm.

Giải

Biến đổi (2) về dạng

\(\begin{array}{l}1 - \cos 2x + 1 + \cos 2y = 2m + 1\\ \Leftrightarrow \cos 2x - \cos 2y = 1 - 2m\\ \Rightarrow  - 2\sin \left( {x - y} \right)\sin \left( {x + y} \right) = 1 - 2m\\ \Leftrightarrow  - 2\sin \left( {x - y} \right)\sin \frac{\pi }{4} = 1 - 2m\\ \Leftrightarrow \sin \left( {x - y} \right) = \frac{{2m - 1}}{{\sqrt 2 }}\,\,\,\left( 3 \right)\end{array}\)

a) Với \(m = 0\), hệ có dạng

\(\left\{ \begin{array}{l}x + y = \frac{\pi }{4}\\\sin \left( {x - y} \right) = \frac{{ - 1}}{{\sqrt 2 }}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = \frac{\pi }{4}\\\left[ \begin{array}{l}x - y =  - \frac{\pi }{4} + 2k\pi \\x - y = \frac{{5\pi }}{4} + 2k\pi \end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = k\pi \\y = \frac{\pi }{4} - k\pi \end{array} \right.\\\left\{ \begin{array}{l}x = \frac{{3\pi }}{4} + k\pi \\y =  - \frac{\pi }{2} - k\pi \end{array} \right.\end{array} \right.\,\,\,\left( {k \in Z} \right)\)

Vậy với \(m = 0\) hệ có hai cặp họ nghiệm.

b) Hệ có nghiệm khi:

\(\left( 3 \right)\) có nghiệm \( \Leftrightarrow \left| {\frac{{2m - 1}}{{\sqrt 2 }}} \right| \le 1 \Leftrightarrow \frac{{1 - \sqrt 2 }}{2} \le m \le \frac{{1 + \sqrt 2 }}{2}\)

Vậy hệ có nghiệm khi \(\frac{{1 - \sqrt 2 }}{2} \le m \le \frac{{1 + \sqrt 2 }}{2}\).

BÀI TẬP ĐỀ NGHỊ

Bài 1: Giải các hệ phương trình:

\(\begin{array}{l}a)\,\,\left\{ \begin{array}{l}2\left( {\cos x + \cos y} \right) =  - 1\\x + y = \frac{{2\pi }}{3}\end{array} \right.\\b)\,\,\left\{ \begin{array}{l}2\left( {\sin x + \sin y} \right) = 3\\x + y = \frac{{2\pi }}{3}\end{array} \right.\\c)\,\,\left\{ \begin{array}{l}\tan x + \tan y = 1\\x + y = \frac{\pi }{4}\end{array} \right.\\d)\,\,\left\{ \begin{array}{l}\cot x + \cot y = 2\\x + y = \frac{\pi }{2}\end{array} \right.\end{array}\)

Bài 2: Cho hệ phương trình \(\left\{ \begin{array}{l}\sin x + \sin y = m\\x + y = \frac{\pi }{3}\end{array} \right.\)

a) Giải hệ với \(m = 1\)

b) Tìm m để hệ có nghiệm.

Bài 3: Cho hệ phương trình \(\left\{ \begin{array}{l}x + y = a\\\tan x + \tan y = b\end{array} \right.\)

a) Giải hệ với \(a = \frac{{5\pi }}{{12}}\) và \(b = 2\)

b) Tìm điều kiện giữa a và b để hệ có nghiệm.

Bài 4: Cho hệ phương trình \(\left\{ \begin{array}{l}3\left( {x - y} \right) = \pi \\{\cos ^2}x + {\cos ^2}y = 2m + 1\end{array} \right.\)

a) Giải hệ phương trình khi \(m = \frac{{\sqrt 2 }}{8}\)

b) Xác định m để hệ trên có nghiệm.

Bài 5: Giải và biện luận các hệ phương trình:

\(\begin{array}{l}a)\,\,\left\{ \begin{array}{l}{\sin ^2}x - {\sin ^2}y = m\\x + y = \alpha \end{array} \right.\\b)\,\,\left\{ \begin{array}{l}{\cos ^2}x + {\cos ^2}y = m\\x + y = 2\pi \end{array} \right.\\c)\,\,\left\{ \begin{array}{l}{\sin ^2}x + {\sin ^2}y = 1 - \cos \alpha \\x + y = \alpha \end{array} \right.\\d)\,\left\{ \begin{array}{l}x + y = a\\2\left( {{{\sin }^2}x + {{\sin }^2}y} \right) = 2 - \sin 2a\end{array} \right.\end{array}\)

Tất cả nội dung bài viết. Các em hãy xem thêm và tải file chi tiết dưới đây:

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT 2025