TÌM NGHIỆM THUỘC KHOẢNG (a;b) CỦA PHƯƠNG TRÌNH LƯỢNG GIÁC

Cập nhật lúc: 09:38 14-09-2017 Mục tin: LỚP 11


Đây là dạng toán khá phổ biến trong các đề kiểm tra cũng như là các đề thi. Bài viết này giúp các em có phương pháp làm cụ thể để giải quyết mọi bài toán về tìm nghiệm thuộc (a;b) của phương trình lượng giác.

TÌM NGHIỆM THUỘC KHOẢNG (a;b) CỦA PHƯƠNG TRÌNH LƯỢNG GIÁC

1. PHƯƠNG PHÁP CHUNG.

Bước 1: Đặt điều kiện có nghĩa cho phương trình.

Bước 2: Giải phương trình để tìm nghiệm \(x = \alpha  + {{2k\pi } \over n},k,n \in Z\)

Bước 3: Tìm nghiệm thuộc \(\left( {a;b} \right)\): \(a < \alpha  + {{2k\pi } \over n} < b\mathop  \Leftrightarrow \limits^{k,n \in Z } \left( {{k_0},{l_0}} \right) \Rightarrow {x_0} = \alpha  + {{2{k_0}\pi } \over {{n_0}}}\)

Ví dụ 1: Tìm nghiệm của phương trình sau trong khoảng đã cho:

$$\sin 2x =  - {1 \over 2}$$ với \(0 < x < \pi \)

Giải

Trước tiên, ta đi giải phương trình bằng phép biến đổi:

\(\sin 2x = \sin \left( { - {\pi \over 6}} \right) \Leftrightarrow \left[ \matrix{
2x = - {\pi \over 6} + 2k\pi \hfill \cr
2x = \pi + {\pi \over 6} + 2k\pi \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = - {\pi \over {12}} + k\pi \hfill \cr
x = {{7\pi } \over {12}} + k\pi \hfill \cr} \right.\,\,\left( {k \in Z } \right)\)

 


Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT 2025