Cập nhật lúc: 14:19 01-12-2017 Mục tin: LỚP 11
Xem thêm: Nhị thức Newton
NHỊ THỨC NEWTON
I)KIẾN THỨC CẦN NHỚ:
1. Hoán vị:
\({P_n} = n.(n - 1).(n - 2)...3.2.1\)
2. Chỉnh hợp:
\(A_n^k = \frac{{\left( {n - k} \right)!}}{{k!}} = n.(n - 1)...(n - k + 1)\)
3. Tổ hợp:
\(C_n^k = \frac{{n!}}{{k!(n - k)!}} = \frac{{n.(n - 1)...(n - k + 1)}}{{k!}}\)
*) Tính chất: \(C_n^k = C_n^{n - k}\)
\(C_n^k + C_n^{k + 1} = C_{n + 1}^{k + 1}\)
4. Công thức Newton:
\({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k} {a^{n - k}}{b^k} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^n{b^n}\)
\({\left( {a - b} \right)^n} = {\left( { - 1} \right)^n}\sum\limits_{k = 0}^n {C_n^k} {a^{n - k}}{b^k} = C_n^0{a^n} - C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} - ... + {\left( { - 1} \right)^n}C_n^n{b^n}\)
II) CÁC DẠNG BÀI TẬP:
Dạng 1: Phương trình, bất phương trình chỉnh hợp tổ hợp.
Dạng 2: Rút gọn đẳng thức, chứng minh biểu thức.
Dạng 3: Xác định hệ số, số hạng trong khai triển lũy thừa.
III)BÀI TẬP RÈN LUYỆN:
Tất cả nội dung bài viết. Các em hãy xem thêm và tải file chi tiết dưới đây:
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Các bài khác cùng chuyên mục
Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT 2025