Cập nhật lúc: 12:15 30-06-2018 Mục tin: LỚP 11
I. Kiến thức cần nhớ
Ý nghĩa hình học của đạo hàm: Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến với đồ thị \(\left( C \right)\) của hàm số tai điểm \(M\left( {{x_0};{y_0}} \right)\) .
Khi đó phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right)\) là \(y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\)
Nguyên tắc chung để lập được phương trình tiếp tuyến ta phải tìm được hoành độ tiếp điểm \({x_0}\)
II. Một số dạng bài tập thường gặp
Dạng 1: Viết phương trình tiếp tuyến khi biết tiếp điểm
1. Phương pháp:
I. Kiến thức cần nhớ
Ý nghĩa hình học của đạo hàm: Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến với đồ thị \(\left( C \right)\) của hàm số tai điểm \(M\left( {{x_0};{y_0}} \right)\) .
Khi đó phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right)\) là \(y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\)
Nguyên tắc chung để lập được phương trình tiếp tuyến ta phải tìm được hoành độ tiếp điểm \({x_0}\)
II. Một số dạng bài tập thường gặp
Dạng 1: Viết phương trình tiếp tuyến khi biết tiếp điểm
1. Phương pháp:
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Các bài khác cùng chuyên mục
Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT 2025