Các dạng toán tiếp tuyến của đồ thị hàm số

Cập nhật lúc: 12:15 30-06-2018 Mục tin: LỚP 11


I. KIẾN THỨC CẦN NHỚ II. MỘT SỐ DẠNG BÀI TẬP THƯỜNG GẶP + Dạng 1. Viết phương trình tiếp tuyến khi biết tiếp điểm + Dạng 2. Viết phương trình tiếp tuyến khi biết phương (biết hệ số góc k) + Dạng 3. Viết phương trình tiếp tuyến khi biết tiếp tuyến đi qua một điểm cho trước + Dạng 4. Một số bài toán chứa tham số III. CÂU HỎI TRẮC NGHIỆM RÈN LUYỆN (có đáp án và lời giải chi tiết) Nguồn: Cao Tuấn

TIẾP TUYẾN CỦA ĐỒ THỊ HÀM SỐ

I. Kiến thức cần nhớ

Ý nghĩa hình học của đạo hàm: Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến với đồ thị \(\left( C \right)\) của hàm số tai điểm \(M\left( {{x_0};{y_0}} \right)\) .

Khi đó phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right)\) là \(y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\)

Nguyên tắc chung để lập được phương trình tiếp tuyến ta phải tìm được hoành độ tiếp điểm \({x_0}\)

II. Một số dạng bài tập thường gặp

Dạng 1: Viết phương trình tiếp tuyến khi biết tiếp điểm

1. Phương pháp:

I. Kiến thức cần nhớ

Ý nghĩa hình học của đạo hàm: Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến với đồ thị \(\left( C \right)\) của hàm số tai điểm \(M\left( {{x_0};{y_0}} \right)\) .

Khi đó phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right)\) là \(y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\)

Nguyên tắc chung để lập được phương trình tiếp tuyến ta phải tìm được hoành độ tiếp điểm \({x_0}\)

II. Một số dạng bài tập thường gặp

Dạng 1: Viết phương trình tiếp tuyến khi biết tiếp điểm

1. Phương pháp:

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT 2025