Cập nhật lúc: 09:46 02-07-2018 Mục tin: LỚP 11
A. LÝ THUYẾT
I. Định nghĩa giới hạn của hàm số tại một điểm
1. Giới hạn hữu hạn tại một điểm
Định nghĩa 1
Cho \(\left( {a;b} \right)\) là một khoảng chứa điểm \({x_0}\) và hàm số \(y = f\left( x \right)\) xác định trên \(\left( {a;b} \right)\) hoặc trên \(\left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\); \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L \Leftrightarrow \) với mọi dãy số \(\left\{ {{x_n}} \right\}\) mà \({x_n} \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\};\,\,{x_n} \to {x_0}\) ta có \(\lim f\left( {{x_n}} \right) = L\).
Nhận xét:
- Giới hạn của hàm số được định nghĩa thông qua giới hạn của dãy số.
- Hàm số không nhất thiết phải xác định tại \({x_0}\).
Định nghĩa 2 (Giới hạn một bên)
Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {{x_0};b} \right).\,\,\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L \Leftrightarrow \) với mọi dãy số \(\left\{ {{x_n}} \right\}\) mà \({x_0} < {x_n} < b;\,\,{x_n} \to {x_0}\) ta có \(\lim f\left( {{x_n}} \right) = L\)
Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;{x_0}} \right).\,\,\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L \Leftrightarrow \) với mọi dãy số \(\left\{ {{x_n}} \right\}\) mà \(a < {x_n} < {x_0};\,\,{x_n} \to {x_0}\) ta có \(\lim f\left( {{x_n}} \right) = L\)
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Các bài khác cùng chuyên mục
Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT 2025