Cập nhật lúc: 09:46 02-07-2018 Mục tin: LỚP 11
Xem thêm: Giới hạn của hàm số
A. LÝ THUYẾT
I. Định nghĩa giới hạn của hàm số tại một điểm
1. Giới hạn hữu hạn tại một điểm
Định nghĩa 1
Cho \(\left( {a;b} \right)\) là một khoảng chứa điểm \({x_0}\) và hàm số \(y = f\left( x \right)\) xác định trên \(\left( {a;b} \right)\) hoặc trên \(\left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\); \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L \Leftrightarrow \) với mọi dãy số \(\left\{ {{x_n}} \right\}\) mà \({x_n} \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\};\,\,{x_n} \to {x_0}\) ta có \(\lim f\left( {{x_n}} \right) = L\).
Nhận xét:
- Giới hạn của hàm số được định nghĩa thông qua giới hạn của dãy số.
- Hàm số không nhất thiết phải xác định tại \({x_0}\).
Định nghĩa 2 (Giới hạn một bên)
Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {{x_0};b} \right).\,\,\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L \Leftrightarrow \) với mọi dãy số \(\left\{ {{x_n}} \right\}\) mà \({x_0} < {x_n} < b;\,\,{x_n} \to {x_0}\) ta có \(\lim f\left( {{x_n}} \right) = L\)
Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;{x_0}} \right).\,\,\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L \Leftrightarrow \) với mọi dãy số \(\left\{ {{x_n}} \right\}\) mà \(a < {x_n} < {x_0};\,\,{x_n} \to {x_0}\) ta có \(\lim f\left( {{x_n}} \right) = L\)
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Các bài khác cùng chuyên mục
Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT 2025