Lý thuyết và phân dạng giới hạn dãy số

Cập nhật lúc: 18:47 23-06-2018 Mục tin: LỚP 11


Đầy đủ các dạng về giới hạn dãy số có phương pháp giải và các bài tập áp dụng, chi tiết và dễ hiểu. Nguồn: Nguyễn Phú Khánh, Huỳnh Đức Khánh

Định nghĩa 1:

Ta nói dãy số \((u_n)\) có giới hạn là 0 khi n dần tới vô cực, nếu \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số bé tùy ý, kể từ số hạng nào đó trở đi.

Kí hiệu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} = 0\), hay \({u_n} \to 0\) khi \(n \to  + \infty \).

Định nghĩa 2:

Ta nói dãy số \((v_n)\) có giới hạn là \(a\) (hay \((v_n)\) dân tới \(a\)) khi \(n \to  + \infty \) nếu \(\mathop {\lim }\limits_{x \to  + \infty } \left( {{v_n} - a} \right) = 0\).

Kí hiệu \(\mathop {\lim }\limits_{x \to  + \infty } {v_n} = a\) hay \({v_n} \to a\) khi \(n \to  + \infty \).

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT 2025