Bài tập giới hạn dãy số - có lời giải chi tiết

Cập nhật lúc: 14:53 19-01-2017 Mục tin: LỚP 11


Bài tập giới hạn dãy số - có lời giải chi tiết. Tài liệu Chuyên đề giới hạn của dãy số - Nguyễn Quốc Tuấn gồm 31 trang, trình bày lý thuyết, phương pháp giải và bài tập trắc nghiệm với 2 dạng toán thường gặp: + Dạng 1: Tìm giới hạn của dãy số + Dạng 2: Tìm giới hạn bằng chứng minh hoặc theo định nghĩa

Tài liệu Chuyên đề giới hạn của dãy số - Nguyễn Quốc Tuấn gồm 31 trang, trình bày lý thuyết, phương pháp giải và bài tập trắc nghiệm với 2 dạng toán thường gặp:
+ Dạng 1: Tìm giới hạn của dãy số
+ Dạng 2: Tìm giới hạn bằng chứng minh hoặc theo định nghĩa

Loại 1: Giới hạn của dãy số hữu tỉ

Phương pháp: Xem xét bậc cao nhất của tư và mẫu. Sau đó, chia tử và mẫu cho bậc cao nhất của tử và mẫu. Hoặc cũng cóthể đặt nhân tử cao nhất của từ và mẫu để được những giới hạn cơ bản. Tính giới hạn này.

Trích dẫn: Qua 3 bài toán ở trên dạng dãy số dạng hữu tỉta rút ra nhận xét như sau.

+ Nếu bậc của tử lớn hơn bậc của mẫu thì giới hạn đó bằng + - vô cùng

+ Nếu bậc của tử bằng bậc của mẫu thì giới hạn đó bằng hệ số bậc cao nhất của tử trên hệ số bậc cao nhất của mẫu

Bài tập mẫu 3: Tính các giới hạn sau:

+ Nếu bậc của tử béhơn bậc của mẫu thì giới hạn đó bằng 0.

Điều này rất cần thiết cho tất cả chúng ta giải bài toán giới hạn dạng hữu tỉ khi giải trắc nghiệm. Bởi vì một giới hạn hữu tỉ khi nhìn vào ta hoàn toàn cóthể biết được kết quả ngay lập tức. Thật vậy những bài toán sau các em hoàn toàn biết được kết quả một cách nhanh chóng và chính xác.

Thật vậy, sử dụng nhận xét đóta thực hiện nhanh các bài tập trắc nghiệm sau:


Tất cả nội dung bài viết. Các em hãy xem thêm và tải file chi tiết dưới đây:

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT 2025