LÝ THUYẾT VÀ BÀI TẬP CHIA ĐA THỨC CHO ĐƠN THỨC

Cập nhật lúc: 13:46 04-11-2018 Mục tin: LỚP 8


Bài viết bao gồm cả lý thuyết và bài tập về chia đa thức cho đơn thức. Phần lý thuyết có đầy đủ các công thức và tính chất các em đã được học để áp dụng làm các bài tập. Các bài tập đều có hướng dẫn giải giúp các em có hướng làm bài và vận dụng tốt để làm những bài sau.

LÝ THUYẾT VÀ BÀI TẬP

CHIA ĐA THỨC CHO ĐƠN THỨC

A. Kiến thức cơ bản 

1. Qui tắc:

Muốn chia đa thức A cho đơn thức B (trường hợp các hạng tử của đa thức A đều chia hết cho đơn thức B), ta chia mỗi hạng tử của A cho B rồi cộng các kết quả với nhau.

2. Chú ý: Trường hợp đa thức A có thể phân tích thành nhân tử, thường ta phân tích trước để rút gọn cho nhanh.

B. Bài tập.

Bài 1

Không làm tính chia, hãy xét xem đa thức A có chia hết cho đơn thức B không:

A = 15xy2 + 17xy3 + 18y2

B = 6y2.

Đáp án và hướng dẫn giải bài:

A chia hết cho B vì mỗi hạng tử của A đều chia hết cho B (mỗi hạng tử của A đều có chứa nhân tử y với số mũ lớn hơn hay bằng 2 bằng với số mũ của y trong B).

Bài 2

Làm tính chia:

a) (-2x5 + 3x2 – 4x3) : 2x2;

b) (x3 – 2x2y + 3xy2) : (-1/2x);

c) (3x2y2 + 6x2y3 – 12xy) : 3xy.

Đáp án và hướng dẫn giải bài:

a) (-2x5 + 3x2 – 4x3) : 2x2 = (-2/2)x5 – 2 + 3/2x2 – 2 + (-4/2)x3 – 2 = – x3 + 3/2 – 2x.

b) (x3 – 2x2y + 3xy2) : (-1/2x) = (x3 : – 1/2x) + (-2x2y : – 1/2x) + (3xy2 : – 1/2x) = -2x2+ 4xy – 6y2 = -2x(x + 2y + 3y2)

c) (3x2y2 + 6x2y3 – 12xy) : 3xy = (3x2y2 : 3xy) + (6x2y2 : 3xy) + (-12xy : 3xy) = xy + 2xy2 – 4.

Bài 3

Làm tính chia:

[3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (y – x)2

(Gợi ý, có thế đặt x – y = z rồi áp dụng quy tắc chia đa thức cho đơn thức)

Đáp án và hướng dẫn giải bài:

[3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (y – x)2

= [3(x – y)4 + 2(x – y)3 – 5(x – y)2] : [-(x – y)]2

= [3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (x – y)2

= 3(x – y)4 : (x – y)2 + 2(x – y): (x – y)2 + [– 5(x – y)2 : (x – y)2]

= 3(x – y)2 + 2(x – y) – 5

Bài 4

Ai đúng, ai sai?

Khi giải bài tập: “Xét xem đa thức A = 5x4 – 4x3 + 6x2y có chia hết cho đơn thức B = 2x2 hay không”,

Hà trả lời: “A không chia hết cho B vì 5 không chia hết cho 2”,

Quang trả lời: “A chia hết cho B vì mọi hạng tử của A đều chia hết cho B”.

Cho biết ý kiến của em về lời giải của hai bạn.

Đáp án và hướng dẫn giải bài:

Ta có: A : B = (5x– 4x3 + 6x2y) : 2x2

= (5x2 : 2x2) + (– 4x3 : 2x2) + (6x2y : 2x2)

= 5/2x2 – 2x + 3y

Như vậy A chia hết cho B vì mọi hạng tử của A đều chia hết cho B.

Vậy: Quang trả lời đùng, Hà trả lời sai.

Bài 5: Thực hiện phép tính:

a, (7.35 – 3+ 36) : 34

b, (163 – 642) : 83

Lời giải:

a, (7.35 – 34 + 36) : 34

= (7.35 : 34) + (– 34 : 34 + (36 : 34)

= 7.3 – 1 + 32

= 21 – 1 + 9 = 29

b, (16– 642) : 83

= [(2.8)3 – (82)2] : 83

= (23.83 – 84) : 83

= (23.83 : 83) + (- 84 : 83)

= 23 – 8 = 8 – 8 = 0

Bài 6: Làm tính chia:

a, (5x4 – 3x3 + x2) : 3x2

b, (5xy+ 9xy – x2y2) : (- xy)

c, (x3y3 - 1/2 x2y3 – x3y2) : 1/3 x2y2

Lời giải:

a, (5x4 – 3x3 + x2) : 3x2

= (5x4 : 3x2) + (– 3x3 : 3x2 ) + (x2 : 3x2) = 53 x2 – x + 13

b, (5xy2 + 9xy – x2y2) : (- xy)

= [5xy2 : (- xy)] + [9xy : (- xy)] + [(- x2y2) : (- xy)] = - 5y – 9 + xy

c, (x3y3 - 1/2 x2y3 – x3y2) : 1/3 x2y2

= (x3y3 : 1/3 x2y2) + (- 1/2 x2y3 : 1/3 x2y2) + (– x3y2 : 13 x2y2)

= 3xy - 3/2 y – 3x

Bài 7: Tìm n để mỗi phép chia sau là phép chia hết (n là số tự nhiên)

a, (5x3 – 7x2 + x) : 3xn

b, (13x4y3 – 5x3y3 + 6x2y2) : 5xnyn

Lời giải:

a, Vì đa thức (5x3 – 7x2 + x) chia hết cho 3xn nên hạng tử x chia hết cho 3xn ⇒ 0 ≤ n ≤ 1. Vậy n ∈ {0; 1}

b, Vì đa thức (13x4y3 – 5x3y3 + 6x2y2) chia hết cho 5xnyn nên hạng tử 6x2y2 chia hết cho 5xny⇒ 0 ≤ n ≤ 2. Vậy n ∈ {0;1;2}

Bài 8: Làm tính chia:

a, [5(a – b)3 + 2(a – b)2] : (b – a)2

b, 5(x – 2y)3 : (5x – 10y)

c, (x3 + 8y3) : (x + 2y)

Lời giải:

a, [5(a – b)3 +2(a – b)2] : (b – a)2

= [5(a – b)3 +2(a – b)2] : (a - b)2 = 5(a – b) + 2

b, 5(x – 2y)3 : (5x – 10y) = 5(x – 2y)3 : 5(x – 2y) = (x – 2y)2

c, (x+ 8y3) : (x + 2y) = [x3 + (2y)3] : (x + 2y)

= (x + 2y)(x2 – 2xy + 4y2) : (x + 2y) = x2 – 2xy + 4y2

 

Tất cả nội dung bài viết. Các em hãy xem thêm và tải file chi tiết dưới đây:

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT Quốc Gia 2021