Cập nhật lúc: 15:41 21-12-2018 Mục tin: LỚP 9
SỞ GD & ĐT THANH HOÁ |
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2006 – 2007 MÔN: TOÁN THỜI GIAN LÀM BÀI: 120 PHÚT |
Bài 1: (1,5 Điểm) Cho biểu thức: A = \(\left( {3 + \dfrac{{a + \sqrt a }}{{\sqrt a + 1}}} \right)\left( {3 - \dfrac{{a - 5\sqrt a }}{{\sqrt a - 5}}} \right)\)
1. Tìm các giá trị của a để biểu thức A có nghĩa.
2. Rút gọn A
Bài 2: (1,5 Điểm)
Giải phương trình: \(\dfrac{6}{{{x^2} - 9}} = 1 + \dfrac{1}{{x - 3}}\)
Bài 3: (1,5 Điểm)
Giải hệ phương trình: \(\left\{ \begin{array}{l}5(3x + y) = 3y + 4\\3 - x = 4(2x + y) + 2\end{array} \right.\)
Bài 4: (1 Điểm)
Tìm các giá trị của tham số m để phương trình sau vô nghiệm:
x2 – 2mx + m|m| + 2 = 0
Bài 5: (1 Điểm) Cho hình chữ nhật ABCD có AB = 2cm, AD = 3cm. Quay hình chữ nhật đó quanh AB thì được một hình trụ. Tính thể tích hình trụ đó.
Bài 6: (2,5 Điểm)
Cho tam giác ABC có ba góc nhọn, Góc B gấp đôi góc C và AH là đường cao. Gọi M là trung điểm của cạnh AC, các đường thẳng MH, AB cắt nhau tại điểm N. Chứng minh rằng:
a. Tam giác MHC cân.
b. Tứ giác NBMC nội tiếp được trong một đường tròn.
c. 2MH2 = AB2 + AB.BH
Bài 7: (1 Điểm) Chứng minh rằng với a > 0 ta có:
\(\dfrac{a}{{{a^2} + 1}} + \dfrac{{5({a^2} + 1)}}{{2a}} \ge \dfrac{{11}}{2}\)
---------------------------------------- hết ---------------------------------------------
SỞ GD & ĐT THANH HOÁ |
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2006 – 2007 MÔN: TOÁN THỜI GIAN LÀM BÀI: 120 PHÚT |
Bài 1: (1,5 Điểm) Cho biểu thức: A =
1. Tìm các giá trị của a để biểu thức A có nghĩa.
2. Rút gọn A
Bài 2: (1,5 Điểm)
Giải phương trình:
Bài 3: (1,5 Điểm)
Giải hệ phương trình:
Bài 4: (1 Điểm)
Tìm các giá trị của tham số m để phương trình sau vô nghiệm:
x2 – 2mx + m|m| + 2 = 0
Bài 5: (1 Điểm) Cho hình chữ nhật ABCD có AB = 2cm, AD = 3cm. Quay hình chữ nhật đó quanh AB thì được một hình trụ. Tính thể tích hình trụ đó.
Bài 6: (2,5 Điểm)
Cho tam giác ABC có ba góc nhọn, Góc B gấp đôi góc C và AH là đường cao. Gọi M là trung điểm của cạnh AC, các đường thẳng MH, AB cắt nhau tại điểm N. Chứng minh rằng:
a. Tam giác MHC cân.
b. Tứ giác NBMC nội tiếp được trong một đường tròn.
c. 2MH2 = AB2 + AB.BH
Bài 7: (1 Điểm) Chứng minh rằng với a > 0 ta có:
---------------------------------------- hết ---------------------------------------------
Tất cả nội dung bài viết. Các em hãy xem thêm và tải file chi tiết dưới đây:
>> Học trực tuyến Lớp 9 & Lộ trình UP10 trên Tuyensinh247.com
>> Chi tiết khoá học xem: TẠI ĐÂY
Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Các bài khác cùng chuyên mục
Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT 2025