Đề thi tuyển sinh vào 10 tỉnh Thanh Hóa năm 2005 - 2006

Cập nhật lúc: 15:24 21-12-2018 Mục tin: LỚP 9


Đề thi tuyển sinh vào 10 tỉnh Thanh Hóa năm 2005 - 2006 có đáp án.

SỞ GD & ĐT THANH HOÁ

KỲ THI TUYỂN SINH VÀO LỚP 10 THPT

NĂM HỌC 2005 – 2006

MÔN: TOÁN

THỜI GIAN LÀM BÀI: 150 PHÚT

 

Bài 1: (2 Điểm)      Cho biểu thức:  A = \(\dfrac{{\sqrt a }}{{\sqrt a  - 1}} - \dfrac{{\sqrt a }}{{\sqrt a  + 1}} + \dfrac{2}{{a - 1}}\)

1. Tìm điều kiện của a để biểu thức A có nghĩa.

2. Chứng minh   A = \(\dfrac{2}{{\sqrt a  - 1}}\)

3. Tìm a để A < -1

Bài 2: (2 Điểm)

1. Giải phương trình:           x2 – x - 6 = 0

2. Tìm a để phương trình:   x2 – (a - 2)x – 2a = 0 có hai nghiệm x1, x2 thoả mãn điều kiện: 2x1 + 3x2 = 0     

Bài 3: (1,5 Điểm)

     Tìm hai số thực dương a, b sao cho điểm M có toạ độ (a; b2 + 3) và điểm N có toạ độ (\(\sqrt {ab} \); 2) cùng thuộc đồ thị của hàm số y = x2

Bài 4: (3 Điểm)    Cho tam giác ABC vuông tại A, có đường cao AH. Đường tròn (O) đường kính HC cắt cạnh AC tại N. Tiếp tuyến với đường tròn (O) tại điểm N cắt cạnh AB tại điểm M. Chứng minh rằng:

1. HN // AB và tứ giác BMNC nội tiếp được trong một đường tròn.

2. Tứ giác AMHN là hình chữ nhật.

3. \({\left( {\dfrac{{MN}}{{MH}}} \right)^2} = 1 + \dfrac{{NC}}{{NA}}\)

Bài 5: (1 Điểm)     Cho a, b là các số thực thoả mãn điều kiện a + b \( \ne \) 0

Chứng minh rằng:   \({a^2} + {b^2} + {\left( {\dfrac{{ab + 1}}{{a + b}}} \right)^2} \ge 2\)

---------------------------------------- Hết ---------------------------------------------



Tất cả nội dung bài viết. Các em hãy xem thêm và tải file chi tiết dưới đây:

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT Quốc Gia 2018