Cập nhật lúc: 13:24 04-11-2018 Mục tin: LỚP 8
Xem thêm: Phân tích đa thức thành nhân tử
LÝ THUYẾT VÀ BÀI TẬP
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
BẰNG PHƯƠNG PHÁP NHÓM HẠNG TỬ
A. Kiến thức cơ bản:
1. Phương pháp:
2. Chú ý:
B. Bài tập
Bài 1
Phân tích các đa thức sau thành nhân tử:
a) x2 – xy + x – y; b) xz + yz – 5(x + y);
c) 3x2 – 3xy – 5x + 5y.
Đáp án và hướng dẫn giải
a) x2 – xy + x – y = (x2 – xy) + (x – y)
= x(x – y) + (x -y)
= (x – y)(x + 1)
b) xz + yz – 5(x + y) = z(x + y) – 5(x + y)
= (x + y)(z – 5)
c) 3x2 – 3xy – 5x + 5y = (3x2 – 3xy) – (5x – 5y)
= 3x(x – y) -5(x – y) = (x – y)(3x – 5).
Bài 2
Phân tích các đa thức sau thành nhân tử:
a) x2 + 4x – y2 + 4; b) 3x2 + 6xy + 3y2 – 3z2;
c) x2 – 2xy + y2 – z2 + 2zt – t2.
Đáp án và hướng dẫn giải bài
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) – y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
Bài 3
Tính nhanh:
a) 37,5 . 6,5 – 7,5 . 3,4 – 6,6 . 7,5 + 3,5 . 37,5
b) 452 + 402 – 152 + 80 . 45.
Đáp án và hướng dẫn giải
a) 37,5 . 6,5 – 7,5 . 3,4 – 6,6 . 7,5 + 3,5 . 37,5
= (37,5 . 6,5 + 3,5 . 37,5) – (7,5 . 3,4 + 6,6 . 7,5)
= 37,5(6,5 + 3,5) – 7,5(3,4 + 6,6)
= 37,5 . 10 – 7,5 . 10
= 375 – 75 = 300.
b) 452 + 402 – 152 + 80 . 45 = 452 +2 . 40 . 45 + 402 – 152
= (40 + 45)2 – 152 = 852 – 152 = (85 – 15)(85 + 15) = 70 . 100 = 7000.
Bài 4
Tìm x, biết:
a) x(x – 2) + x – 2 = 0; b) 5x(x – 3) – x + 3 = 0
Đáp án và hướng dẫn giải:
a) x(x – 2) + x – 2 = 0
(x – 2)(x + 1) = 0
Hoặc x – 2 = 0 => x = 2
Hoặc x + 1 = 0 => x = -1
Vậy x = -1; x = 2
b) 5x(x – 3) – x + 3 = 0
5x(x – 3) – (x – 3) = 0
(x – 3)(5x – 1) = 0
Hoặc x – 3 = 0 => x = 3
Hoặc 5x – 1 = 0 => x = 1/5.
Vậy x = 1/5; x = 3
Bài 5: Phân tích thành nhân tử:
a, x2 – x – y2 – y
b, x2 – 2xy + y2 - z2
Lời giải:
a, x2 – x – y2 – y
= (x2 – y2) – (x + y)
= (x + y)(x – y) – (x + y)
= (x + y)(x – y – 1)
b, x2 – 2xy + y2 - z2
= (x2 – 2xy + y2) – z2
= (x – y)2 – z2
= (x – y + z)(x – y – z)
Bài 6: Phân tích thành nhân tử:
a, 5x – 5y + ax – ay
b, a3 – a2x – ay + xy
Lời giải:
a, 5x – 5y + ax – ay = (5x – 5y) + (ax – ay)
= 5(x – y) + a(x – y) = (x – y)(5 + a)
b, a3 – a2x – ay + xy = (a3 – a2x) – (ay – xy)
= a2(a – x) – y(a – x) = (a – x)(a2 – y)
= x2y + xy2 + yz(y + z) + x2z + xz2 + xyz + xyz
= (x2y + x2z) + yz(y + z) + (xy2 + xyz) + (xz2 + xyz)
= x2(y + z) + yz(y + z) + xy(y+ z) + xz(y + z)
= (y + z)( x2 + yz + xy + xz) = (y + z)[(x2 + xy) + (xz + yz)]
= (y + z)[x(x + y) + z(x + y)] = (y + z)(x+ y)(x + z)
Bài 7: Tính nhanh giá trị của mỗi đa thức:
a, x2 – 2xy – 4z2 + y2 với x = 6; y = -4; z= 45
b, 3(x – 3)(x + 7) + (x – 4)2 + 48 với x = 0,5
Lời giải:
a, x2 – 2xy – 4z2 + y2 = (x2 – 2xy + y2) – 4z2
= (x – y)2 – (2z)2 = (x – y + 2z)(x – y – 2z)
Thay x = 6; y = -4; z= 45 vào biểu thức ta được:
(6 + 4 + 90)(6 + 4 – 90) = 100.(-80) = -8000
b, 3(x – 3)(x + 7) + (x – 4)2 + 48
= 3(x2 + 7x – 3x – 21) + x2 – 8x + 16 + 48
= 3x2 + 12x – 63 + x2 – 8x + 64 = 4x2 + 4x + 1 = (2x + 1)2
Thay x = 0,5 vào biểu thức ta được:
(2.0,5 + 1)2 = (1 + 1)2 = 4
Tất cả nội dung bài viết. Các em hãy xem thêm và tải file chi tiết dưới đây:
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Các bài khác cùng chuyên mục
Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT 2025