Cập nhật lúc: 17:19 11-08-2015 Mục tin: LỚP 12
I. Ý tưởng: Ta có một hình chóp S.ABC việc tính thể tích của khối chóp này được thực hiện rất dễ dàng (đường cao hạ từ S xuống mặt đáy (ABC)), ta cần tính khoảng cách từ C đến (SAB) tức tìm chiều cao CE. Vì thể của hình chóp là không thay đổi dù ta có xem điểm nào đó (S, A, B, C) là đỉnh vì vậy nếu ta biết diện tích tam giác SAB thì khoảng cách cần tìm đó CE = \(\frac{3V}{S_{ABC}}\) . Có thể gọi là dùng thể tích 2 lần.
Nhận xét: Với cách tính trên khâu tính diện tích ta dùng máy tính hầu hết đều ra đẹp. So với cách tính bằng tọa độ hóa thì cách tính này đơn giản hơn rất nhiều về tính toán và trình bày chỉ khó ở khâu tính diện tích (nhưng máy tính đã đảm nhận), so với cách lùi về E để tính (đương nhiên phải kẻ thêm đường phụ) với học sinh trung bình yếu có thể nói đây là lựa chọn tốt nhất.
Ví dụ 2: Cho hình chóp S.ABCD với đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ A đến (SCD).
Giải
Tất cả nội dung bài viết. Các em hãy xem thêm và tải file chi tiết dưới đây:
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Các bài khác cùng chuyên mục
Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT 2025