Cập nhật lúc: 11:15 04-01-2017 Mục tin: LỚP 12
1. Vectơ pháp tuyến và cặp vectơ chỉ phương của mặt phẳng
• Vectơ được gọi là một vectơ pháp tuyến (VTPT) của mp(P) nếu ≠ và giá của vuông góc với (P).
• Cặp vectơ , được gọi là một cặp vectơ chỉ phương (VTCP) của (P) nếu ≠ , ≠ và giá của chúng nằm trong (P) hay song song với (P).
• Nhận xét: Nếu , là cặp VTCP của (P) thì là một VTPT của (P).
2. Phương trình của mặt phẳng
• Mặt phẳng (P) qua điểm Mo(xo; yo; zo) và có VTPT = (A ; B ; C) là:
A(x - xo) + B(y - yo) + C(z - zo) = 0.
• Nếu A2 + B2 + C2 > 0 (A, B, C không đồng thời bằng 0) thì phương trình
Ax + By + Cz + D = 0
là phương trình của một mặt phẳng có VTPT là = (A ; B ; C).
3. Các trường hợp đặc biệt của phương trình mặt phẳng
Tính chất của mặt phẳng (P) |
Phương trình của mặt phẳng (P) |
(P) qua gốc O |
Ax + By + Cz = 0 |
(P) trùng với mp(Oxy) |
z = 0 |
(P) trùng với mp(Oyz) |
x = 0 |
(P) trùng với mp(Oxz) |
y = 0 |
(P) // Ox hay (P) chứa Ox |
By + Cz + D = 0 |
(P) // Oy hay (P) chứa Oy |
Ax + Cz + D = 0 |
(P) // Oz hay (P) chứa Oz |
Ax + By + D = 0 |
(P) // mp(Oxy) |
Cz + D = 0 (C.D ≠ 0) hay z = m |
(P) // mp(0xz) |
By + D = 0 (B.D ≠ 0) hay y = n |
(P) // mp(0yz) |
Ax + D = 0 (A.D ≠ 0) hay x = p |
(P) qua các điểm A(a ; 0 ; 0), B(0 ; b ; 0), |
4. Vị trí tương đối của hai mặt phẳng
Cho hai mặt phẳng : (α) : Ax + By + Cz + D = 0 và (β) : A’x + B’y + C’z + D’ = 0.
Ta có
• A : B : C ≠ A’ : B’ : C’ : (α) và (β) cắt nhau.
5. Khoảng cách từ một điểm đến một mặt phẳng
Khoảng cách từ điểm Mo(xo ; yo ; zo) đến (P) : Ax + By + Cz + D = 0 là:
6. Bài tập
Tất cả nội dung bài viết. Các em hãy xem thêm và tải file chi tiết dưới đây:
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Các bài khác cùng chuyên mục
Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT 2025