Sự biến thiên của hàm số

Cập nhật lúc: 14:07 26-05-2015 Mục tin: LỚP 12


Phần xét tính đơn điệu của hàm số bao gồm: Lý thuyết cơ bản về tính đơn điệu của hàm số, phương pháp làm 2 dạng bài thường gặp trong kỳ thi THPT Quốc Gia môn Toán là dạng bài xét tính đơn điệu ( tính đồng biến, nghịch biến ) của hàm số, dạng bài tìm m để hàm số đơn điệu trên một khoảng.

I. Kiến thức cơ bản

1. Định nghĩa

Kí hiệu K là một khoảng, nửa khoảng hoặc một đoạn

a) Hàm số f(x) được gọi là đồng biến trên K, nếu với mọi cặp \dpi{100} x_{1},x_{2}\epsilon K mà \dpi{100} x_{1}<x_{2} thì \dpi{100} f(x_{1})<f(x_{2})

b) Hàm số f(x) được gọi là nghịch biến trên K, nếu với mọi cặp \dpi{100} x_{1},x_{2}\epsilon K mà \dpi{100} x_{1}<x_{2} thì \dpi{100} f(x_{1})>f(x_{2})

Hàm số f(x) đồng biến ( nghịch biến ) trên K còn gọi là tăng ( hay giảm ) trên K. Hàm số đồng biến hoặc nghịch biến trên K còn gọi chung là hàm số đơn điệu trên K

2. Định Lý

Cho hàm số y = f(x) xác định và có đạo hàm trên K

II. Phân loại các dạng bài tập

Vấn đề 1. Tìm các khoảng đồng biến, nghịch biến của một hàm số cho trước ( hay xét chiều biến thiên của hàm số y = f(x) )

Phương pháp chung

Bước 1: Tìm tập xác định của hàm số. Tính đạo hàm f'(x)

Bước 2: Tìm các giá trị của x làm cho f'(x) = 0 hoặc f'(x) không xác định.

Bước 3: Tính các giới hạn

Bước 4: Lập bảng biến thiên của hàm số và kết luận.

Bài tập 1: Tìm các khoảng đồng biến, nghịch biến của hàm số \dpi{100} y=-x^{4}+2x^{2}+3

Giải

Tập xác định D = R

Vậy hàm số đồng biến trong các khoảng (-∞; -1) (0;1)

Hàm số nghịch biến trong các khoảng (-1;0) (1; +∞).

Chú ý: Khi kết luận không được kết luận là Vậy hàm số đồng biến trong các khoảng (-∞; -1)∪  (0;1); Hàm số nghịch biến trong các khoảng (-1;0) ∪ (1; +∞).

Bài tập 2: Xét chiều biến thiên của hàm số \dpi{100} y = 2x^{3}-3x^{2}+1

Giải

Tập xác định D = R

Đạo hàm y'= \dpi{100} 6x^{2}-6x

y' = 0 <=> \dpi{100} 6x^{2}-6x = 0  <=> x = 0 hoặc x = 1

Bảng biến thiên

Vậy hàm số đồng biến trên khoảng (-∞;0) và (1;+∞) ; hàm số nghịch biến trên khoảng (0;1).

 

Bài tập vận dụng

Vấn đề 2. Xác định tham số m để hàm số đồng biến ( nghịch  biến ).

I. Phương pháp 1. Sử dụng phương pháp hàm số

Trong phương pháp này ta cần quan tâm 2 chú ý sau

II. Phương pháp 2: Sử dụng tam thức bậc 2

1. Cơ sở lý thuyết

1. Cho hàm số  xác định và có đạo hàm trên D

 

2. Bài tập áp dụng


 


Tất cả nội dung bài viết. Các em hãy xem thêm và tải file chi tiết tại đây: Download

>> Khai giảng Luyện thi ĐH-THPT Quốc Gia 2017 bám sát cấu trúc Bộ GD&ĐT bởi các Thầy Cô uy tín, nổi tiếng đến từ các trung tâm Luyện thi ĐH hàng đầu, các Trường THPT Chuyên và Trường Đại học..

Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT Quốc Gia 2016